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Background and Motivation
o Fused Tile Partitioning (FTP)

• Input data tiling

• Layer fusion

➢ Distributable tasks with lightweight data synchronization   

o Distributed work stealing runtime system 

• Gateway: central coordination

• Edge: peer-to-peer work stealing

➢ Collaborative inference 

➢ DeepThings: distributed adaptive deep learning 

inference on resource-constrained IoT edge clusters

o Internet-of-Things (IoT)

• Complicated and noisy sensing scenarios

• Large scale data processing & analytics

➢ Deep learning (DL) techniques for IoT applications

- Computational and memory-intensive  

o Cloud-based vs. fog/edge computing 

• Privacy

• Unpredictable remote server and communication latency

• Computational resources near the sources

- Edge and gateway devices 

➢ Deep learning inference in IoT edge clusters

➢ Efficient deployment on resource-constrained IoT devices
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Experimental Setup Memory Footprint Latency & Throughput

Communication Overhead 
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o Convolutional operation

• Local connectivity between neurons 

of consecutive layers

➢ Grid partitioning with 

boundary consideration

o Chain of multiple convolutional layers

• Large amount of intermediate data

• Boundary synchronization 

overhead per layer

➢ Layer fusion

➢ Independent execution stacks

o Redundancy in Fused Tile Partitioning 

• Duplicated overlapped data for independent sub-tasks

• Overlapped data amplified through many fused layers

➢ Possible data reuse to reduce computation  

o Distributed work stealing in local 

wireless area network 

• Source data partitioning & inference 

task generation

• Peer-to-peer data & task migration

• Gateway-managed load balancing 

• Local inference using external library 

o Message flow between edge and 

gateway devices 

o Edge Node Runtime

• Work stealing service

- Serve work stealing

- Send results to gateway

• CNN inference service

- Partition data frames

- Process partitioned data

- Perform work stealing 

o Gateway Runtime

• Work stealing service

- Round-robin scheduling 

- Collect results from edge nodes 

• CNN inference service

- Merge FTP partition results 

- Process remaining layers

o Open-source framework

• Retargetable implementation in C

• TCP/IP socket APIs 

• Released in open-source form

o Experiment platform 

• Raspberry Pi 3 Model B 

• Up to 6 nodes in WLAN over WiFi

o Deep leaning application

• You Only Look Once object detector

• First 16 layers 

• Multiple data sources

o Experimental parameters

o Per device memory footprints of each layer 

• Maximum memory usage reduction

- 61% in 4-way BODP, 58% and 68% for FTP 3x3 and 5x5

• Average memory footprint reduction per layer

- 67% in 4-way BODP, 69% and 79% for FTP 3x3 and 5x5

o Work sharing (WSH) 

• MoDNN: Communication overhead increases 

linearly with device number because of layer-

based data exchange  

• FTP-WSH: Communication overhead is fixed

o Work stealing with scheduling (WST-S) 

• An average of 52% reduction 

comparing with WSH 

• Overhead in data reuse, amortized by 

smaller input data 

o Single data source

• 6.8s with 3.5x speedup in 

FTP-WST-S, 6-device network

• 8.1s with 2.1x speedup MoDNN, 

6-device network

• Scalability benefits in DeepThings

- FTP: Avoid intensive intermediate 

data exchange

- WST: Adaptively use 

communication bandwidth and 

exploit communication overhead 

• Data-reuse aware scheduling 

reduces 27% latency 

o Multiple data sources

• Maximum latency

- MoDNN: proportional with 

number of sources 

- FTP-WST-S: 3.1x with 

data source(s) increasing 

from 1 to 6 

• Throughput

- MoDNN: 0.12 FPS with 6 

data sources

- FTP-WST-S: 0.29 FPS 

with 6 data sources
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o FTP partition scheduling 

• Minimize the partition dependency 

- Scheduling tasks to be stolen in 

dependency order

- Caching overlapped reuse data in gateway


