
Supported by National Science Foundation (NSF) Grant CNS-1421642

DeepThings: Distributed Adaptive Deep Learning Inference
on Resource-Constrained IoT Edge Clusters

Zhuoran Zhao, Kamyar Mirzazad and Andreas Gerstlauer
Electrical and Computer Engineering

The University of Texas at Austin

Overview

DeepThings Framework

Experimental Results

DeepThings Overview
CNN

Parameters
Pre-trained

Weights

Fused Tile
Partitioning (FTP)

FTP
Parameters

Runtime System

Data Frame

Platform
Constraints

Local
Tasks

Gateway
Device

Edge
Device

Task Results

CNN
Model

Weights

Data Frame
Partitioner

DeepThings
Runtime

CNN
Framework

Inference
Engine:
Caffe,

Darknet ...

Background and Motivation
o Fused Tile Partitioning (FTP)

• Input data tiling

• Layer fusion

➢ Distributable tasks with lightweight data synchronization

o Distributed work stealing runtime system

• Gateway: central coordination

• Edge: peer-to-peer work stealing

➢ Collaborative inference

➢ DeepThings: distributed adaptive deep learning

inference on resource-constrained IoT edge clusters

o Internet-of-Things (IoT)

• Complicated and noisy sensing scenarios

• Large scale data processing & analytics

➢ Deep learning (DL) techniques for IoT applications

- Computational and memory-intensive

o Cloud-based vs. fog/edge computing

• Privacy

• Unpredictable remote server and communication latency

• Computational resources near the sources

- Edge and gateway devices

➢ Deep learning inference in IoT edge clusters

➢ Efficient deployment on resource-constrained IoT devices

Distributed Work StealingFused Tile Partitioning (FTP)

Data Reuse-Aware Work Scheduling

Partition Input

Steal
Partitions

A B C

Part A, B and C are
executed in parallel

Stealing
Order

Steal
Partitions

Part A, C and G are
executed in parallel

Stealing
Order

A C

E

Steal
Partitions

Part B, D and F are
executed in parallel

B

D FPartition
Scheduling

G I H

Wireless
NetworkSend overlapped

data to gateway

Wireless
NetworkRequest overlapped

data from gateway

D E F

G H I

Partition Input Partition Input

A
B
C
D
E
F
G
H
I

A
C
G
I
E
B
D
F
H

Wireless
Network

Device0

(Victim)
GatewayDevice1

(Stealer)

New Data

Busy List = {}

Busy List = {0}

Busy List = {0}

{0}

t0

t1

t2

t3

CNN Inference Service

Comp.ThreadTask
Queue Register

Result
Queue

Partition
Inference

Work Stealing Service

Stealing Server
Thread

Request
Handler

Stealer Thread

Steal & Part.
Inference

Partition Result
Collection Thread

Send Result

Idle

Push

Push

Pop

Partition
Result

Serve
Stealing Pop

Pop

Stealing
Req.

& Steal

Data Frame
Partitioner

Results PoolResults Pool

CNN Inference Service

Comp.Thread

Serve
Registration

Image
Inference

Work Stealing Service

Stealing Server
Thread

Request Handler

Partition Result
Collection Thread

Recv. Results

Registered
client list

Put
Results

Serve
Stealing Req.

Partition
Result

Merge Partition
Results

Results Pool

Ready

Image0 Image1 Image2 Image3

... ..
.

...

D0

..
. ...

...

..
.

..
.

...
...

..
.

..
.

x1

x2

y1
y2

D1

D2

D3

Layer 1

...
D0

D1

D0

Independent Fused
Partition Executions

...

Conv-BN-ReLU

Conv-BN-ReLU

Maxpool

Layer 2

Layer 3

M

N N x M

W0

H0

F1

F1

Experimental Setup Memory Footprint Latency & Throughput

Communication Overhead

DeepThings MoDNN

Partition Method
Fused Tile

Partitioning (FTP)

Biased One-
Dimensional

Partition (BODP)

Partition
Dimensions

3x3 ~ 5x5 1x1 ~ 1x6

Distribution
Method

Work Stealing
(WST)

Work Sharing
(WSH)

Work Sharing
(WSH)

Edge Node
Number

1 ~ 6

o Convolutional operation

• Local connectivity between neurons

of consecutive layers

➢ Grid partitioning with

boundary consideration

o Chain of multiple convolutional layers

• Large amount of intermediate data

• Boundary synchronization

overhead per layer

➢ Layer fusion

➢ Independent execution stacks

o Redundancy in Fused Tile Partitioning

• Duplicated overlapped data for independent sub-tasks

• Overlapped data amplified through many fused layers

➢ Possible data reuse to reduce computation

o Distributed work stealing in local

wireless area network

• Source data partitioning & inference

task generation

• Peer-to-peer data & task migration

• Gateway-managed load balancing

• Local inference using external library

o Message flow between edge and

gateway devices

o Edge Node Runtime

• Work stealing service

- Serve work stealing

- Send results to gateway

• CNN inference service

- Partition data frames

- Process partitioned data

- Perform work stealing

o Gateway Runtime

• Work stealing service

- Round-robin scheduling

- Collect results from edge nodes

• CNN inference service

- Merge FTP partition results

- Process remaining layers

o Open-source framework

• Retargetable implementation in C

• TCP/IP socket APIs

• Released in open-source form

o Experiment platform

• Raspberry Pi 3 Model B

• Up to 6 nodes in WLAN over WiFi

o Deep leaning application

• You Only Look Once object detector

• First 16 layers

• Multiple data sources

o Experimental parameters

o Per device memory footprints of each layer

• Maximum memory usage reduction

- 61% in 4-way BODP, 58% and 68% for FTP 3x3 and 5x5

• Average memory footprint reduction per layer

- 67% in 4-way BODP, 69% and 79% for FTP 3x3 and 5x5

o Work sharing (WSH)

• MoDNN: Communication overhead increases

linearly with device number because of layer-

based data exchange

• FTP-WSH: Communication overhead is fixed

o Work stealing with scheduling (WST-S)

• An average of 52% reduction

comparing with WSH

• Overhead in data reuse, amortized by

smaller input data

o Single data source

• 6.8s with 3.5x speedup in

FTP-WST-S, 6-device network

• 8.1s with 2.1x speedup MoDNN,

6-device network

• Scalability benefits in DeepThings

- FTP: Avoid intensive intermediate

data exchange

- WST: Adaptively use

communication bandwidth and

exploit communication overhead

• Data-reuse aware scheduling

reduces 27% latency

o Multiple data sources

• Maximum latency

- MoDNN: proportional with

number of sources

- FTP-WST-S: 3.1x with

data source(s) increasing

from 1 to 6

• Throughput

- MoDNN: 0.12 FPS with 6

data sources

- FTP-WST-S: 0.29 FPS

with 6 data sources

FTP – 5x5

FTP – 3x3

FTP – 3x3

FTP – 5x5

FTP – 3x3

FTP – 5x5

o FTP partition scheduling

• Minimize the partition dependency

- Scheduling tasks to be stolen in

dependency order

- Caching overlapped reuse data in gateway

